當(dāng)光照射到光陰極時(shí),光陰極向真空中激發(fā)出光
電子。這些
光電子按聚焦極電場(chǎng)進(jìn)入倍增
系統(tǒng),并通過進(jìn)一步的二次發(fā)射得到的倍增放大。然后把放大后的電子用陽極收集作為信號(hào)輸出。因?yàn)椴捎昧硕伟l(fā)射倍增系統(tǒng),所以
光電倍增管在探測(cè)紫外、可見和近紅外區(qū)的輻射能量的光電探測(cè)器中,具有極高的靈敏度和極低的噪聲。另外,光電倍增管還具有響應(yīng)快速、成本低、陰極面積大等優(yōu)點(diǎn)。
8BvonYt=8 '_b.\_s-d 基于外光電效應(yīng)和二次電子發(fā)射效應(yīng)的電子真空
器件。它利用二次電子發(fā)射使逸出的光電子倍增,獲得遠(yuǎn)高于光電管的靈敏度,能測(cè)量微弱的光信號(hào)。光電倍增管包括陰極室和由若干打拿極組成的二次發(fā)射倍增系統(tǒng)兩部分(見圖)。陰極室的結(jié)構(gòu)與光陰極K的尺寸和形狀有關(guān),它的作用是把陰極在光照下由外光電效應(yīng)(見光電式
傳感器)產(chǎn)生的電子聚焦在面積比光陰極小的第一打拿極D1的表面上。二次發(fā)射倍增系統(tǒng)是最復(fù)雜的部分。打拿極主要選擇那些能在較小入射電子能量下有較高的靈敏度和二次發(fā)射系數(shù)的材料制成。常用的打拿極材料有銻化銫、氧化的銀鎂合金和氧化的銅鈹合金等。打拿極的形狀應(yīng)有利于將前一級(jí)發(fā)射的電子收集到下一極。在各打拿極 D1、D2、D3…和陽極A上依次加有逐漸增高的正電壓,而且相鄰兩極之間的電壓差應(yīng)使二次發(fā)射系數(shù)大于1。這樣,光陰極發(fā)射的電子在D1電場(chǎng)的作用下以高速射向打拿極D1,產(chǎn)生更多的二次發(fā)射電子,于是這些電子又在D2電場(chǎng)的作用下向D2飛去。如此繼續(xù)下去,每個(gè)光電子將激發(fā)成倍增加的二次發(fā)射電子,最后被陽極收集。電子倍增系統(tǒng)有聚焦型和非聚焦型兩類。聚焦型的打拿極把來自前一級(jí)的電子經(jīng)倍增后聚焦到下一級(jí)去,兩極之間可能發(fā)生電子束軌跡的交叉。非聚焦型又分為圓環(huán)瓦片式(即鼠籠式)、直線瓦片式、盒柵式和百葉窗式。
m~uOXb Y<0 4RV *6(kbe