引 言
UNq!| 5bGV91 光纖傳感器自20世紀70年代以來,以其具有的靈敏度高、耐腐蝕、抗電磁干擾能力強、安全可靠等特點取得了飛速的發(fā)展。同時,這些特性也使它可以實現(xiàn)某些特殊條件下的測量工作,比起常規(guī)檢測技術具有諸多優(yōu)勢,是傳感技術發(fā)展的一個主導方向。
G@h6>O 13s!gwE) 作為光纖傳感器中關鍵的
光學元件之一的
光源,其穩(wěn)定度直接影響著光纖傳感器的準確度。本文所涉及的光纖傳感器采用的是
半導體激光器光源,半導體
激光器具有單色性好、方向性好、體積小、光功率利用率高等優(yōu)點,但是,光功率輸出受外界環(huán)境變化的影響較大。因此,本文針對半導體激光光源的工作原理和特性,設計了一種簡單可行的自動功率控制(APC)
驅動電路,通過背向監(jiān)測光電流形成反饋,實現(xiàn)恒功率控制。并且,引入了慢啟動電路,防止電源電壓的干擾,使激光器不會受到每次開啟電源時產(chǎn)生的過流沖擊,延長了激光器的使用壽命。經(jīng)實驗驗證,該電路解決了激光器在使用中輸出功率不穩(wěn)定的問題,其穩(wěn)定度優(yōu)于0.5%,達到了較好的穩(wěn)流效果。
=0`"T!1 =jip* E^ 1 光源的工作原理和特性
R_.C,mR ? BBnbXhxZ 目前,實際應用的光源有表面光發(fā)射二極管(
LED)、激光二極管(LD)、超輻射二極管(SLD)、超熒光光源(SFS)等。隨著光纖傳感技術的迅速發(fā)展,體積小、質量輕、功耗小、容易與光纖
耦合的LD等半導體光源應用越來越廣泛。本文主要研究半導體LD的驅動設計。
gKcP\m ^x%yIS 1.1 LD發(fā)光機理分析
#ldNWwvRGj I-4csw<Qy LD的基本結構為:垂直于PN結面的一對平行平面構成法布里-珀羅諧振腔,它們可以是半導體晶體的解理面,也可以是經(jīng)過拋光的平面。其余兩側面則相對粗糙,用以消除主方向外其他方向的激光作用。當半導體的PN結加有正向電壓時,會削弱PN結勢壘,迫使電子從N區(qū)經(jīng)PN結注入P區(qū),空穴從P區(qū)經(jīng)過PN結注入N區(qū),這些注入PN結附近的非平衡電子和空穴將會發(fā)生復合,從而發(fā)射出波長為λ的光子,其公式
|vA3+kG _;$VH4(BI λ=hc/Eg, (1)
$I~=t{;"XV Jg3}U j2By 式中 h為普朗克常數(shù);c為光速;Eg為半導體的禁帶寬度。
Nqp%Z7G e-H:;m5R 如果注入電流足夠大,則會形成和熱平衡狀態(tài)相反的載流子分布,即粒子數(shù)反轉。當有源層內的載流子在大量反轉情況下,少量自發(fā)輻射產(chǎn)生的光子由于諧振腔兩端面往復反射而產(chǎn)生感應輻射,造成選頻諧振正反饋,或者說對某一頻率具有增益。當增益大于吸收損耗時,就可從PN結發(fā)出方向性好、相干性強、亮度高、頻帶窄的激光。LD除了具備一般激光的相干性好、方向性強、發(fā)散角小、能量高度集中外,還具有光電轉換效率高、輸出功率大、體積小、
重量輕、結構簡單、抗震性強等特點。
x$I~y D =(K;z9OR 1.2 LD輸出特性
7*d}6\
% "P.7FD 圖1是一種典型的半導體激光器在不同溫度下的輸出功率與正向驅動電流的關系曲線。為了便于看清楚,圖中底部的近似直線部分有意抬高了一些。由圖1中可以看出:當驅動電流低于閾值時,激光器只能發(fā)射出熒光,只有當驅動電流大于激光器的閾值電流時,激光器才能正常工作發(fā)出激光,因此,要使LD發(fā)射激光,就要供給LD略大于閾值電流的工作電流。而且,LD的閾值電流受溫度的影響,溫度越高,相應的閾值電流越大。在某一溫度下,當驅動電流低于閾值電流時,輸出光功率近似為零;當驅動電流高于閾值時,輸出激光,光輸出功率隨著驅動電流的增大而迅速增加,并近似呈線性上升。
Ps7(