亚洲AV日韩AV无码污污网站_亚洲欧美国产精品久久久久久久_欧美日韩一区二区视频不卡_丰满无码人妻束缚无码区_久爱WWW成人网免费视频

Pocket Projectors

發(fā)布:ahzhuo 2007-11-27 10:36 閱讀:4543
Mobile devices can store pictures and videos, but viewing them on such a small screen isn't ideal. Microvision, based in Redmond, WA, hopes to solve this problem with a microprojector the company plans to reveal at next year's Consumer Electronics Show. The system, composed of semiconductor lasers and a tiny mirror, will be small enough to integrate into a phone or an iPod, says Randy Sprague, chief engineer at Microvision. dig76D_[e  
1`\kXaG  
Right now there is great interest in putting projectors in phones. Indeed, major phone manufacturer Nokia is "looking at" different technologies to integrate projectors into mobile devices (see "The Future of Cell Phones"). As the fabrication technology used to make the components of these projectors matures, it is becoming more economically feasible to create a projector small enough to fit into a handheld device, says Microvision's Sprague. /MtacR  
_S1uJ~j;E  
The projector developed at Microvision is composed of two main parts: a set of red, blue, and green lasers made of semiconductor material, such as gallium indium arsenide, and a mirror--one millimeter across--that tilts on two axes. The lasers shine on the mirror, and the mirror reflects the pixel of light onto a wall or other surface. The intensities of the lasers change to produce different colors: when all three are pumping out light full blast, the pixel is white; when all three are off, the pixel is black. Other colors are produced from various combinations in between. }dl(9H=4  
+,>bpp1  
As the lasers flash on the mirror, the mirror gimbals on its two axes, flickering to produce 30 million pixels a second, each illuminating a surface for 20 nanoseconds. Using this laser and single-mirror setup, the projector paints a scene onto a surface one pixel at a time, says Sprague. It does this so quickly that our eyes perceive a static image or a continuous movie. 5C?1`-&65V  
ir#^5e @  
One of the challenges is to design a rapidly gyrating mirror that can coordinate with the lasers that turn on and off 100 million times a second. "This mirror is thrashing all around, and the lasers are buzzing like crazy," says Sprague, "so you have to synchronize." *X=-^\G  
Ka{Zoi]  
Integrated into the Microvision mirror, he says, are silicon mechanical structures that measure strain on the mirror, detecting what position it's in. This information is fed back into the laser modulator--the device that determines when a laser is emitting light or not--and the feedback loop allows the system to constantly adjust, depending on the demands of the projected image. S}O\<6&  
eO G%6C%a  
The mirror, its mount, and the other mechanical components are all made of silicon, putting the projector in a class of device called MEMS (microelectromechanical systems). Sprague says that Microvision developed most of the technology a couple of years ago, but it was waiting for one particular component to become available: a green laser that modulates at the rate required for the projector to work. Only recently have such compact, high-powered lasers become commercially available, he says (see "Ultra-Colorful TV"). CU_06A|}  
RfRaWbn