模型描述
TOG4=y-N 這里,我們研究
光纖中非線性自聚焦的細(xì)節(jié)。首先,我們計(jì)算了由于非線性自聚焦的影響,大模面積光纖的基模如何收縮。
zB0*KgAn{ 模式解算器實(shí)際上忽略了非線性效應(yīng)。然而,只需幾行腳本代碼,我們就可以存儲包括其非線性變化在內(nèi)的
折射率分布,然后重新計(jì)算光纖模式。重復(fù)這一過程,直到我們得到一個(gè)自洽的解:
B /uaRi% }I
uqB*g[t dr := 0.05 um
`l'T/F\ defarray I[0, 200 um, dr]
U%bm{oVn n_f_nl(r) := n_f(r) + n2 * (if r <= r_max then I~[r])
tgG
8pL { nonlinear refractive index profile }
&1<[@:; store_I(P) :=
s i2@k for r := 0 to 2 * r_co step dr do
yfV]f
LZ I[r] := P * I_lm(0, 1, lambda, r)
D|(\5]:R { ignore index changes outside 2 * r_co, where the intensity is small }
Y _`JS; rkji#\_-FV CalcNonlinearMode(P) :=
EGgw#JAi#t { Calculate the lowest-order mode with self-focusing for the power P. }
nZnqXclzxn begin
.?s jr4 var A, A_l;
BA1H)% A := 0;
fx+_;y repeat
wG MhKZE A_l := A;
@P~%4:!Hr store_I(P);
Ox#vW6;) set_n_profile("n_f_nl", r_max);
'V^M+ng A := A_eff_lm(0, 1, lambda);
TaSS) n until abs(A_l / A - 1) < 1e-6;
U -OD end
y'`7zJ 考慮到光纖的非線性,可以對
光束的傳播進(jìn)行數(shù)值
模擬。為此,我們需要定義一個(gè)數(shù)值網(wǎng)格,并為光束傳播設(shè)置各種其他輸入:
D"aK;_W@h x_max := 30 um { maximum x or y value }
Wap4:wT N := 2^5 { number of grid points in x and y direction }
eY#^vB dx := 2 * x_max / N { transverse resolution }
``<#F3 z_max := 30 mm { fiber length }
,gNZHKNq dz := 100 um { longitudinal resolution }
:(ql=+vDb4 N_z := z_max / dz { number of z steps }
sAU%:W{ N_s := 100 { number of sub-steps per dz step }
D~ 3@v+d :|kO}NGM P_11 := 4 MW
#